Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Science ; 383(6681): 402-406, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271522

RESUMEN

SS 433 is a microquasar, a stellar binary system that launches collimated relativistic jets. We observed SS 433 in gamma rays using the High Energy Stereoscopic System (H.E.S.S.) and found an energy-dependent shift in the apparent position of the gamma-ray emission from the parsec-scale jets. These observations trace the energetic electron population and indicate that inverse Compton scattering is the emission mechanism of the gamma rays. Our modeling of the energy-dependent gamma-ray morphology constrains the location of particle acceleration and requires an abrupt deceleration of the jet flow. We infer the presence of shocks on either side of the binary system, at distances of 25 to 30 parsecs, and that self-collimation of the precessing jets forms the shocks, which then efficiently accelerate electrons.

2.
Phys Rev Lett ; 129(11): 111101, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36154418

RESUMEN

The central region of the Milky Way is one of the foremost locations to look for dark matter (DM) signatures. We report the first results on a search for DM particle annihilation signals using new observations from an unprecedented γ-ray survey of the Galactic Center (GC) region, i.e., the Inner Galaxy Survey, at very high energies (≳100 GeV) performed with the H.E.S.S. array of five ground-based Cherenkov telescopes. No significant γ-ray excess is found in the search region of the 2014-2020 dataset and a profile likelihood ratio analysis is carried out to set exclusion limits on the annihilation cross section ⟨σv⟩. Assuming Einasto and Navarro-Frenk-White (NFW) DM density profiles at the GC, these constraints are the strongest obtained so far in the TeV DM mass range. For the Einasto profile, the constraints reach ⟨σv⟩ values of 3.7×10^{-26} cm^{3} s^{-1} for 1.5 TeV DM mass in the W^{+}W^{-} annihilation channel, and 1.2×10^{-26} cm^{3} s^{-1} for 0.7 TeV DM mass in the τ^{+}τ^{-} annihilation channel. With the H.E.S.S. Inner Galaxy Survey, ground-based γ-ray observations thus probe ⟨σv⟩ values expected from thermal-relic annihilating TeV DM particles.

3.
Lett Appl Microbiol ; 75(5): 1275-1285, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35938312

RESUMEN

Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.


Asunto(s)
Antiinfecciosos , Bacteriocinas , Polihidroxialcanoatos , Proteobacteria/metabolismo , Agar , Carbono/metabolismo , Péptido Sintasas , Fragmentos de Péptidos
4.
Science ; 376(6588): 77-80, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271303

RESUMEN

Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy (VHE; [Formula: see text]) gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga-electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.

5.
Phys Rev Lett ; 125(2): 021301, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32701326

RESUMEN

On January 14, 2019, the Major Atmospheric Gamma Imaging Cherenkov telescopes detected GRB 190114C above 0.2 TeV, recording the most energetic photons ever observed from a gamma-ray burst. We use this unique observation to probe an energy dependence of the speed of light in vacuo for photons as predicted by several quantum gravity models. Based on a set of assumptions on the possible intrinsic spectral and temporal evolution, we obtain competitive lower limits on the quadratic leading order of speed of light modification.

6.
Nature ; 575(7783): 464-467, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31748724

RESUMEN

Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe1. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed2. GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.

7.
Phys Rev Lett ; 120(20): 201101, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864326

RESUMEN

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28} cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

8.
RSC Adv ; 8(41): 23191-23198, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35540168

RESUMEN

Tailoring the surface chemistry of CoCr alloys is of tremendous interest in many biomedical applications. In this work, we show that CoCr can be modified by diazonium electrografting provided the surface is not homogeneously covered with an oxide layer. Cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) show the electrografting of a poly(aminophenylene) (PAP) layer on CoCr when treated at a reductive potential (CoCr-0.5 V), whereas no PAP film was formed on CoCrOCP and CoCr1 V, treated at open circuit and anodic potentials respectively. Based on XPS results, we attributed the electrografting to the formation of carbide bonds between PAP and the inhomogeneous thin oxide layer of CoCr-0.5 V. We then show an example of application of PAP coatings on CoCr and prove that the presence of a PAP coating on CoCr-0.5 V results in a 5-fold increase of the adherence of poly methyl methacrylate (PMMA) to PAP-coated CoCr compared to uncoated samples; this is of prime significance to improving the long-term stability of dental prostheses. These findings support the importance of reducing the oxide layer for effective functionalization of metal oxides with aryl diazonium salts and suggest a promising surface modification approach for biomedical applications.

9.
J Dent Res ; 97(3): 303-311, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29045803

RESUMEN

Periodontal regeneration is still a challenge for periodontists and tissue engineers, as it requires the simultaneous restoration of different tissues-namely, cementum, gingiva, bone, and periodontal ligament (PDL). Here, we synthetized a chitosan (CH)-based trilayer porous scaffold to achieve periodontal regeneration driven by multitissue simultaneous healing. We produced 2 porous compartments for bone and gingiva regeneration by cross-linking with genipin either medium molecular weight (MMW) or low molecular weight (LMW) CH and freeze-drying the resulting scaffolds. We synthetized a third compartment for PDL regeneration by CH electrochemical deposition; this allowed us to produce highly oriented microchannels of about 450-µm diameter intended to drive PDL fiber growth toward the dental root. In vitro characterization showed rapid equilibrium water content for MMW-CH and LMW-CH compartments (equilibrium water content after 5 min >85%). The MMW-CH compartment degraded more slowly and provided significantly more resistance to compression (28% ± 1% of weight loss at 4 wk; compression modulus HA = 18 ± 6 kPa) than the LMW-CH compartment (34% ± 1%; 7.7 ± 0.8 kPa) as required to match the physiologic healing rates of bone and gingiva and their mechanical properties. More than 90% of all human primary periodontal cell populations tested on the corresponding compartment survived during cytocompatibility tests, showing active cell metabolism in the alkaline phosphatase and collagen deposition assays. In vivo tests showed high biocompatibility in wild-type mice, tissue ingrowth, and vascularization within the scaffold. Using the periodontal ectopic model in nude mice, we preseeded scaffold compartments with human gingival fibroblasts, osteoblasts, and PDL fibroblasts and found a dense mineralized matrix within the MMW-CH region, with weakly mineralized deposits at the dentin interface. Together, these results support this resorbable trilayer scaffold as a promising candidate for periodontal regeneration.


Asunto(s)
Quitosano/farmacología , Regeneración Tisular Guiada Periodontal/métodos , Andamios del Tejido , Animales , Biomimética , Supervivencia Celular , Células Cultivadas , Reactivos de Enlaces Cruzados/química , Fibroblastos , Encía/citología , Humanos , Inmunohistoquímica , Ensayo de Materiales , Ratones , Microscopía Electrónica de Rastreo , Osteoblastos , Ligamento Periodontal/citología , Polímeros/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
10.
J R Soc Interface ; 13(123)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27707904

RESUMEN

Polar and charged amino acids (AAs) are heavily expressed in non-collagenous proteins (NCPs), and are involved in hydroxyapatite (HA) mineralization in bone. Here, we review what is known on the effect of single AAs on HA precipitation. Negatively charged AAs, such as aspartic acid, glutamic acid (Glu) and phosphoserine are largely expressed in NCPs and play a critical role in controlling HA nucleation and growth. Positively charged ones such as arginine (Arg) or lysine (Lys) are heavily involved in HA nucleation within extracellular matrix proteins such as collagen. Glu, Arg and Lys intake can also increase bone mineral density by stimulating growth hormone production. In vitro studies suggest that the role of AAs in controlling HA precipitation is affected by their mobility. While dissolved AAs are able to inhibit HA precipitation and growth by chelating Ca2+ and PO43- ions or binding to nuclei of calcium phosphate and preventing their further growth, AAs bound to surfaces can promote HA precipitation by attracting Ca2+ and PO43- ions and increasing the local supersaturation. Overall, the effect of AAs on HA precipitation is worth being investigated more, especially under conditions closer to the physiological ones, where the presence of other factors such as collagen, mineralization inhibitors, and cells heavily influences HA precipitation. A deeper understanding of the role of AAs in HA mineralization will increase our fundamental knowledge related to bone formation, and could lead to new therapies to improve bone regeneration in damaged tissues or cure pathological diseases caused by excessive mineralization in tissues such as cartilage, blood vessels and cardiac valves.


Asunto(s)
Aminoácidos/metabolismo , Densidad Ósea , Calcificación Fisiológica , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Modelos Biológicos , Animales , Humanos
11.
Mater Sci Eng C Mater Biol Appl ; 67: 72-84, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287101

RESUMEN

Magnesium-based alloys are attractive candidate materials for medical applications. Our earlier work showed that the ternary Mg-0.3Sr-0.3Ca alloy exhibits slower degradation rates than both binary Mg-Sr and Mg-Ca alloys. The ternary alloy immersed in simulated body fluid (SBF) forms a compact surface layer of corrosion products that we hypothesized to be a Sr-substituted hydroxyapatite (HA). The main objectives of the current work are to understand the bio-degradation mechanism of Mg-0.3Sr-0.3Ca, to identify the exact nature of its protective layer and to evaluate the in vitro and in vivo biocompatibility of the alloy for cardiovascular applications. To better simulate the physiological environment, the alloy was immersed in SBF which was daily refreshed. Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) confirmed the formation of a thin, Sr-substituted HA layer at the interface between the alloy and the corrosion products. In vitro biocompatibility evaluated via indirect cytotoxicity assays using HUVECs showed no toxicity effect and ions extracted from Mg-0.3Sr-0.3Ca in fact increased the viability of HUVECs after one week. In vivo tests were performed by implanting a tubular Mg-0.3Sr-0.3Ca stent along with a WE43 control stent into the right and left femoral artery of a dog. Post implantation and histological analyses showed no thrombosis in the artery with Mg-0.3Sr-0.3Ca stent after 5weeks of implantation while the artery implanted with WE43 stent was extensively occluded and thrombosed. Microscopic observation of the Mg-0.3Sr-0.3Ca implant-tissue interface confirmed the in situ formation of Sr-substituted HA on the surface during in vivo test. These results show that the interfacial layer protects the surface of the Mg-0.3Sr-0.3Ca alloy both in vitro and in vivo, and is the key factor in the bio-corrosion resistance of the alloy.


Asunto(s)
Aleaciones/farmacología , Materiales Biocompatibles Revestidos/farmacología , Arteria Femoral/cirugía , Ensayo de Materiales , Stents , Animales , Calcio/farmacología , Perros , Arteria Femoral/metabolismo , Humanos , Magnesio/farmacología , Estroncio/farmacología , Propiedades de Superficie
12.
Nanoscale ; 8(6): 3407-15, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26791107

RESUMEN

The addition of graphene nanoplatelets (GNP) to TiO2 nanoparticles (NPs) has been recently considered as a method to improve the photocatalytic efficiency of TiO2 by favoring charge carrier separation. Here, we show that it is possible to improve the efficiency of GNP-TiO2 composites by controlling the shape, stability, and facets of TiO2 NPs grown on GNP functionalized with either COOH or NH2 groups, while adding ethylendiamine (EDA) and oleic acid (OA) during a hydrothermal synthesis. We studied the photocatalytic activity of all synthesized materials under UV-A light using phenol as a target molecule. GNP-TiO2 composites synthesized on COOH-functionalized GNP, exposing {101} facets, were more efficient at abating phenol than those synthesized on NH2-functionalized GNP, exposing {101} and {100} facets. However, neither of these composites was stable under irradiation. The addition of both OA and EDA stabilized the materials under irradiation; however, only the composite prepared on COOH-functionalized GNP in the presence of EDA showed a significant increase in phenol degradation rate, leading to results that were better than those obtained with TiO2 alone. This result can be attributed to Ti-OH complexation by EDA, which protects GNP from oxidation. The orientation of the most reducing {101} facets toward GNP and the most oxidizing {100} facets toward the solution induces faster phenol degradation owing to a better separation of the charge carriers.

13.
J R Soc Interface ; 13(114): 20150986, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26791001

RESUMEN

Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.


Asunto(s)
Arginina/química , Líquidos Corporales/química , Durapatita/química , Ácido Glutámico/química , Grafito/química , Animales , Humanos
14.
Anal Bioanal Chem ; 406(20): 4841-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24848118

RESUMEN

We propose a homogenous multi-analyte immunoassay based on the quenching of quantum dot (QD) fluorescence by means of graphene. Two QDs with emission maxima at 636 and 607 nm were bound to antibodies selective for mouse or chicken immunoglobulins, respectively, and graphene functionalized with carboxylic moieties was employed to covalently link the respective antigen. The antibody-antigen interaction led graphene close enough to QDs to quench the QD fluorescence by resonance energy transfer. The addition of free antigens that competed with those linked to graphene acted as a "turn-on" effect on QD fluorescence. Fluorescence emitted by the two QDs could be recorded simultaneously since the QDs emitted light at different wavelengths while being excited at the same wavelength and proved to be linearly correlated with free antigen concentration. The developed assay allows measuring both antigens over 2-3 orders of magnitude and showed estimated limits of detection in the nanomolar range. This approach is thus a promising universal strategy to develop homogenous immunoassays for diverse antigens (cells, proteins, low-molecular-mass analytes) in a multi-analyte configuration.

15.
Mater Sci Eng C Mater Biol Appl ; 35: 267-82, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24411378

RESUMEN

Low density, non-toxicity, biodegradability and mechanical properties similar to human tissues such as bone make magnesium (Mg) alloys attractive for biomedical applications ranging from bone to cardiovascular implants. The most important challenge that still prevents the widespread use of Mg implants is their rapid degradation rate. In this study we investigate the combined effect of calcium (Ca) and strontium (Sr) on the corrosion behavior of Mg via in vitro immersion and electrochemical tests in simulated body fluid (SBF), and analyze changes in mechanical properties. We show that the combined addition of 0.3 wt.% Sr and 0.4 wt.% Ca decreases the corrosion rate of Mg both in terms of mass loss and hydrogen evolution more effectively than the single addition of either alloying element. We investigate the microstructure of as-cast specimens and the morphology of the corrosion products using optical microscopy, scanning electron microscopy, electron probe micro-analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Tensile and three point bending tests reveal that the ternary alloy Mg-0.3Sr-0.3Ca has a good combination of mechanical properties and corrosion resistance with hydrogen evolution rates of 0.01 mL/cm(2)/h in SBF. Higher concentrations of Sr and Ca alter the resulting microstructure leading to increased corrosion rates in SBF by promoting the micro-galvanic corrosion between the α-Mg matrix and intermetallic phases of Mg17Sr2 and Mg2Ca along the grain boundaries. These results indicate that the combined addition of optimal amounts of Ca and Sr is a promising approach to decrease the high degradation rate of Mg implants in physiological conditions, as well as attaining high ductility in the alloy. The better properties of the Mg-0.3Sr-0.3Ca alloy are related to the new intermetallic phases found in this sample. The optimum composition is attributed to the "third element effect", as seen in the corrosion behavior of metallic alloys.


Asunto(s)
Sustitutos de Huesos/síntesis química , Calcio/química , Magnesio/química , Prótesis e Implantes , Estroncio/química , Aleaciones/síntesis química , Materiales Biomiméticos/química , Líquidos Corporales/química , Corrosión , Módulo de Elasticidad , Análisis de Falla de Equipo , Dureza , Humanos , Ensayo de Materiales , Transición de Fase , Diseño de Prótesis , Resistencia a la Tracción
16.
Phys Rev Lett ; 110(4): 041301, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166149

RESUMEN

Gamma-ray line signatures can be expected in the very-high-energy (E(γ)>100 GeV) domain due to self-annihilation or decay of dark matter (DM) particles in space. Such a signal would be readily distinguishable from astrophysical γ-ray sources that in most cases produce continuous spectra that span over several orders of magnitude in energy. Using data collected with the H.E.S.S. γ-ray instrument, upper limits on linelike emission are obtained in the energy range between ∼ 500 GeV and ∼ 25 TeV for the central part of the Milky Way halo and for extragalactic observations, complementing recent limits obtained with the Fermi-LAT instrument at lower energies. No statistically significant signal could be found. For monochromatic γ-ray line emission, flux limits of (2 × 10(-7) -2 × 10(-5)) m(-2) s(-1) sr(-1) and (1 × 10(-8) -2 × 10(-6)) m(-2) s(-1)sr(-1) are obtained for the central part of the Milky Way halo and extragalactic observations, respectively. For a DM particle mass of 1 TeV, limits on the velocity-averaged DM annihilation cross section ⟨σv⟩(χχ → γγ) reach ∼ 10(-27) cm(3)s(-1), based on the Einasto parametrization of the Galactic DM halo density profile.

17.
Acta Biomater ; 9(2): 5319-30, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22871640

RESUMEN

Magnesium is an attractive material for use in biodegradable implants due to its low density, non-toxicity and mechanical properties similar to those of human tissue such as bone. Its biocompatibility makes it amenable for use in a wide range of applications from bone to cardiovascular implants. Here we investigated the corrosion rate in simulated body fluid (SBF) of a series of Mg-Sr alloys, with Sr in the range of 0.3-2.5%, and found that the Mg-0.5 Sr alloy showed the slowest corrosion rate. The degradation rate from this alloy indicated that the daily Sr intake from a typical stent would be 0.01-0.02 mg day⁻¹, which is well below the maximum daily Sr intake levels of 4 mg day⁻¹. Indirect cytotoxicity assays using human umbilical vascular endothelial cells indicated that Mg-0.5 Sr extraction medium did not cause any toxicity or detrimental effect on the viability of the cells. Finally, a tubular Mg-0.5 Sr stent sample, along with a WE43 control stent, was implanted into the right and left dog femoral artery. No thrombosis effect was observed in the Mg-0.5 Sr stent after 3 weeks of implantation while the WE43 stent thrombosed. X-ray diffraction demonstrated the formation of hydroxyapatite and Mg(OH)2 as a result of the degradation of Mg-0.5 Sr alloy after 3 days in SBF. X-ray photoelectron spectroscopy further showed the possibility of the formation of a hydroxyapatite Sr-substituted layer that presents as a thin layer at the interface between the Mg-0.5 Sr alloy and the corrosion products. We believe that this interfacial layer stabilizes the surface of the Mg-0.5 Sr alloy, and slows down its degradation rate over time.


Asunto(s)
Implantes Absorbibles , Aleaciones/farmacología , Materiales Biocompatibles/farmacología , Durapatita/farmacología , Ensayo de Materiales , Estroncio/farmacología , Animales , Líquidos Corporales/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Corrosión , Perros , Arteria Femoral/efectos de los fármacos , Arteria Femoral/ultraestructura , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Implantes Experimentales , Espectroscopía de Fotoelectrones , Espectrometría por Rayos X , Propiedades de Superficie , Difracción de Rayos X
18.
J R Soc Interface ; 10(80): 20120906, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23269851

RESUMEN

Non-collagenous proteins (NCPs) inhibit hydroxyapatite (HA; Ca(5)(PO(4))(3)OH) formation in living organisms by binding to nascent nuclei of HA and preventing their further growth. Polar and charged amino acids (AAs) are highly expressed in NCPs, and the negatively charged ones, such as glutamic acid (Glu) and phosphoserine (P-Ser) seem to be mainly responsible for the inhibitory effect of NCPs. Despite the recognized importance of these AAs on the behaviour of NCPs, their specific effect on HA crystallization is still unclear, and controversial results have been reported concerning the efficacy of HA inhibition of positively versus negatively charged AAs. We focused on a positively charged (arginine, Arg) and a negatively charged (Glu) AA, and their combination in the same solution. We studied their inhibitory effect on HA nucleation and growth at physiological temperature and pH and we determined the mechanism by which they can affect HA crystallization. Our results showed a strong inhibitory effect of Arg on HA nucleation; however, Glu was more effective in inhibiting HA crystal growth during the growth stage. The combination of Glu and Arg was less effective in controlling HA nucleation, but it inhibited HA crystal growth. We attributed these differences to the stability of complexes formed between AAs and calcium and phosphate ions at the nucleation stage, and in bonding strength of AAs to HA crystal faces during the growth stage. The AAs also influenced the morphology of synthesized HA. Presence of either Arg or Glu resulted in the formation of spherulites consisting of preferentially oriented nanoplatelets orientation. This was attributed to kinetic factors favoring growth front nucleation (GFN) mechanism.


Asunto(s)
Arginina/química , Durapatita/química , Ácido Glutámico/química , Modelos Químicos , Cristalización
19.
Phys Rev Lett ; 106(16): 161301, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21599352

RESUMEN

A search for a very-high-energy (VHE; ≥100 GeV) γ-ray signal from self-annihilating particle dark matter (DM) is performed towards a region of projected distance r∼45-150 pc from the Galactic center. The background-subtracted γ-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) γ-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual γ-ray flux. Assuming conventional Navarro-Frenk-White and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section (σv) as a function of the DM particle mass. These are among the best reported so far for this energy range and in particular differ only little between the chosen density profile parametrizations. In particular, for the DM particle mass of ∼1 TeV, values for (σv) above 3×10(-25) cm(3) s(-1) are excluded for the Einasto density profile.

20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(24): 2428-34, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19467934

RESUMEN

The development of a capture step of a human recombinant F(ab')(2) produced and expressed in baculovirus-infected cells was investigated by screening three mixed-mode chromatography sorbents (HEA HyperCel, PPA HyperCel and MEP HyperCel) and two ion exchangers (Q Ceramic HyperD F, S Ceramic HyperD F) sorbents using a 96-well plate format and SELDI-MS. HEA HyperCel gave the best separation performance therefore the conditions tested in micro-plate were transferred to laboratory scale chromatographic experiments, confirming that the recombinant F(ab')(2) was effectively captured on the mixed-mode sorbent without any pre-treatment of the crude extract with a 82% recovery and a 39-fold purification.


Asunto(s)
Baculoviridae/genética , Cromatografía Liquida/métodos , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Resinas Sintéticas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Baculoviridae/metabolismo , Línea Celular , Cromatografía Liquida/instrumentación , Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...